Processing UAV and lidar point clouds in GRASS GIS
XXIII ISPRS Congress, Prague 2016

Vaclav Petras (Vashek)
Anna Petrasova, Justyna Jeziorska, Helena Mitasova

Center for Geospatial Analytics

July, 2016

available at
wenzeslaus.github.io/grass-lidar-talks
Providing algorithms to the community

- new landform recognition approach – geomorphons

- by Jasiewicz and Stepinski from AMU, Poland and University of Cincinnati, USA

- not just a paper Geomorphology, 2013

- not just a code at some webpage

- r.geomorphon module in GRASS GIS addons repository
all in one
- hydrology modeling, image segmentation, point clustering, ...
- driven by needs of users
 - direct access to development process
- from small laptops to supercomputers
 - Raspberry Pi, Windows, Mac, GNU/Linux, FreeBSD, IBM AIX
- learn now, use forever
 - over 30 years of development and interface refinement
- used by
 - US Oak Ridge National Laboratory, Edmund Mach Foundation, JRC, ...
GUI

GRASS GIS 7.1.svn Layer Manager

GRASS GIS 7.1.svn Map Display 1 - Location: nantahala@vpetras

GUI for Point Clouds in GRASS GIS

Vaclav Petras (NC State University)

Point clouds in GRASS GIS

July, 2016
Python and command line interfaces

Command Line:

```
r.in.lidar input=points.las \  
    output=elevation -e
```

Python:

```python
from grass.script import run_command
run_command(’r.in.lidar’,
            input="points.las",
            output="elevation",
            flags=’e’)
```
Graphical Modeler

(1) r.in.lidar
(2) r.slope.aspect
(3) r.param.scale
(4) r.relief
(5) r.shade

Elevation/input/input/cols: elevation

aspect
gray_scale_aspect

slope
slope_degrees

output_landforms

output:
elevation_shaded
shade:
elevation_shaded

Point clouds in GRASS GIS

July, 2016
collected by lidar

- generated by Structure from Motion (SfM) from UAV imagery

Surface interpolated from points and visualized in GRASS GIS
Workflow overview

points → decimation → vector → analysis

points → binning → raster → analysis

points → interpolation → vector → analysis
Surface interpolation

- `v.surf.idw`
 - Inverse Distance squared Weighting
- `v.surf.bspline`
 - Bicubic or bilinear Spline interpolation with Tykhonov regularization
- `v.surf.rst`
 - Regularized Spline with Tension
 - `v.surf.rst.mp` (experimental)
 - 2 millions of points in 11 minutes
Import and decimation

- v.in.lidar
 - libLAS
 - LAS/LAZ to GRASS GIS native vector
 - data stored in GRASS GIS database
- interpolation, clustering, ... are costly
- often more points than we need
- decimation \approx thinning \approx sampling
 - count-based decimation (skips points)
 - grid-based experimental, others needed?
Evaluating level of detail

- Local relief model (LRM)
- \textit{r.local.relief} (micro-topography, features other than trend)

30-60cm wide, 30cm deep, 60m long gully (resolution 30cm)
Influence of grid-based decimation resolution

grid size 0.1 m

0%

grid size 0.3 m

81%

grid size 0.9 m

98%

grid size 1.5 m

99%
grid-based decimation may give slightly better results

at resolution 0.5 m for all raster calculations, 72 point per 1 m²
Decimating lidar point cloud

fast count-based decimation as good as more advanced grid-based decimation at resolution 0.5 m for all raster calculations, 1 point per 1 m²
Binning points to raster

- \textit{r.in.lidar}
- import and analysis
- statistics of point counts, height and intensity
 - n, min, max, sum
 - mean, range, skewness, . . .
many algorithms are raster-based
 ▶ 163 raster modules
 ▶ 45 imagery modules
 ▶ 20 spatio-temporal raster modules

example:
 1. count of ground points
 2. count of non-ground points
 3. used as image bands
 4. segmentation using *i.segment*
same principles as in 2D
 - e.g. 3D raster map algebra
 - challenging to visualize
3D raster

- same principles as in 2D
 - e.g. 3D raster map algebra
- challenging to visualize
Binning points to 3D raster

- `r3.lidar`
- count per 3D cell relative to the count per vertical column

vertical slice of 3D raster

difference in vegetation structure

dense

sparse

point count percentage
Point heights reduced to surface

- `r3.in.lidar`, option `base_raster`
- height reduced by 2D raster values
Ground detection

- `v.lidar.edgedetection`,
 `v.lidar.growing`,
 `v.lidar.correction`
 by Brovelli, Cannata, Antolin & Moreno

- `v.lidar.mcc`
 multiscale curvature based classification algorithm
 by Blumentrath, according to Evans & Hudak

- PDAL filters.ground
 currently in v.in.pdal
 progressive morphological filter by Zhang
 provided by PCL
Integration with PDAL

PDAL

- Point Data Abstraction Library
- format conversions
- processing, filtering
Using other open source projects

r.in.kinect

- scans using Kinect
- OpenKinect libfreenect2
- Point Cloud Library (PCL)
- GRASS GIS libraries

used in Tangible Landscape
Summary

- decimation or *rasterize early* approach for large point clouds
- 3D rasters
- PDAL integration

Get GRASS GIS 7.3 development version at grass.osgeo.org/download

GRASS user mailing list
lists.osgeo.org/listinfo/grass-user

Paper and slides available at wenzeslaus.github.io/grass-lidar-talks
Acknowledgements

Software

Presented functionality is work done by Vaclav Petras, Markus Metz, and the GRASS development team.

Thanks to users for feedback and testing, especially to Doug Newcomb, Markus Neteler, Laura Belica, and William Hargrove.
Datasets
Lidar and UAV Structure from Motion (SfM) data for GIS595/MEA792: UAV/lidar Data Analytics course
Nantahala NF, NC: Forest Leaf Structure, Terrain and Hydrophysiology. Obtained from OpenTopography.
http://dx.doi.org/10.5069/G9HT2M76
Acknowledgements

Presentation software

Slides were created in \LaTeX\ using the BEAMER \textit{class}.

Vaclav Petras (NC State University)
Point clouds in GRASS GIS
July, 2016 26 / 23